A geometric definition of the Mãné-Mather set and a Theorem of Marie-Claude Arnaud

نویسندگان

  • Patrick Bernard
  • Joana Santos
  • Marie-Claude Arnaud
  • Joana Oliveira dos Santos
  • Joana O. Santos
چکیده

We study some properties of Lipschitz exact Lagrangian manifolds isotopic to the zero section. We prove that if such a manifold is invariant under an optical Hamiltonian, then it must be a Lipschitz graph. This extends a recent result of Marie-Claude Arnaud. We also obtain a new geometric description of the Mañé-Mather invariant set. —– Résumé. On étudie quelques propriétés des variétés exactes Lagrangiennes Lipschitz isotopes à la section nulle. On montre qu’une telle variété est un graphe Lipschitz si elle est invariante par un Hamiltonian optique, ce qui étend un résultat récent de Marie-Claude Arnaud. On obtient aussi une nouvelle description géométrique de l’ensemble invariant de Mañé-Mather. —– Resumo Estudamos algumas propriedades das variedades Lagrangianas exactas Lipschitz isotópicas à secção nula. Mostramos que uma tal variedade, se for invariante por um Hamiltoniano óptico, é um gráfico Lipschitz, o que generaliza um resultado recente de Marie-Claude Arnaud. Obtemos também uma nova descrição geométrica do conjunto invariante de MañéMather. —– MSC: 37J50, 37J05, 53D12, 57R17. membre de l’IUF author financed by the scholarship SFRH/BD/35773/2007 of the FCT, Portugal (Fundação para a Ciência e Tecnologia).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolicity for conservative twist maps of the 2-dimensional annulus

These are notes for a minicourse given at Regional Norte UdelaR in Salto, Uruguay for the conference CIMPA Research School Hamiltonian and Lagrangian Dynamics. We will present Birkhoff and Aubry-Mather theory for the conservative twist maps of the 2-dimensional annulus and focus on what happens close to the Aubry-Mather sets: definition of the Green bundles, link between hyperbolicity and shape...

متن کامل

A geometric definition of the Aubry-Mather set

We study the Aubry set which appears in Mather theory of convex Hamiltonian systems from the point of view of symplectic geometry.

متن کامل

On generalized fuzzy numbers

This paper first improves Chen and Hsieh’s definition of generalized fuzzy numbers, which makes it the generalization of definition of fuzzy numbers. Secondly, in terms of the generalized fuzzy numbers set, we introduce two different kinds of orders and arithmetic operations and metrics based on the λ-cutting sets or generalized λ-cutting sets, so that the generalized fuzzy numbers are integrat...

متن کامل

Birkhoff's Theorem from a geometric perspective: A simple example

‎From Hilbert's theorem of zeroes‎, ‎and from Noether's ideal theory‎, ‎Birkhoff derived certain algebraic concepts (as explained by Tholen) that have a dual significance in general toposes‎, ‎similar to their role in the original examples of algebraic geometry‎. ‎I will describe a simple example that illustrates some of the aspects of this relationship‎. The dualization from algebra to geometr...

متن کامل

Several new results based on the study of distance measures of intuitionistic fuzzy sets

It is doubtless that intuitionistic fuzzy set (IFS) theory plays an increasingly important role in solving the problems under uncertain situation. As one of the most critical members in the theory, distance measure is widely used in many aspects. Nevertheless, it is a pity that part of the existing distance measures has some drawbacks in practical significance and accuracy. To make up for their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017